A Practical Guide to
Usability Testing

Revisep EDITION

Joseph S. Dumas
Janice C. Redish

intellect

5

Evaluating Usability
Throughout Design and
Development

Getting experts to review the design ..o
Having peers or experts walk through the design.............ccccoevens

Having users work with prototypes ...,
Using static, paper-based prototypes ...
Using interactive, software-based prototypescuumnunnene

Getting user edits on early versions of documentation.........
Conducting iterative usability testscoomnmmmsissanes

Comparing usability testing with other usability evaluation

e 19

. T

64 * A Practical Guide to Usability Testing

Our focus in this book is on usability testing within the context of
usability engineering. [n the previous chapter, we discussed the
importance of that context. In this chapter, we discuss usability
testing and other methods to improve usability that you can apply
during design and development.

Each of the methods we describe has strengths and weaknesses.
The best approach to usability engineering is to develop a strategy
that allows you to combine the strengths of several methods. We
discuss the strengths and weaknesses of usability testing in this
chapter and suggest other methods to make up for its weaknesses.
We discuss:

Getting experts to review the design

Having peers or experts walk through the design
Having users work with prototypes

Getting user edits on early versions of documentation
Asking users about their satisfaction

Conducting iterative usability tests

& & & & & @

We end the chapter by discussing some recent research comparing
usability testing with other usability evaluation methods.

The evaluation methods we discuss in this chapter are not the only
methods you can use, but they are commonly used and they have
been evaluated in a series of research studies.

Getting Experts to Review the Design

One of the traditional methods that American companies use to get
help about a special area of knowledge is to “call in an expert.”
Evaluating usability is one of the areas where this method is used. It is
not unusual for a company developing a product to seek consultants
who profess to be experts in usability. Are these experts effective?
The answer to that question is not simple because it provokes other
questions, such as:

Does it work compared to what?
Does an expert do a better evaluation of usability than the
product’s designers?
Is using an expert cost effective?
¢ On what basis does an expert evaluate usability?
* What are the qualifications of an expert?

Recently, some research has addressed some of these questions. The
primary motivation behind these studies has been to find usability
evaluation methods that are cost-effective. One of the assumptions
that is often mentioned in the introductions to these studies is that
usability testing is an expensive method and, therefore, organizations

Evaluating Usability Throughout Design and Development = 65

that develop products are looking for cheaper ways to evaluate
usability. For example, Desurvire, Kondziela, and Atwood (1992)
open their paper on comparing usability evaluation methods by
saying, "There is increasing interest in finding usability testing
methods that are easier and cheaper to implement than traditional
laboratory usability testing, which is frequently not performed due to
the lack of funds, planning, or human factors expertise.”

As we will see later in this chapter, the question of whether
usability testing is expensive compared to other methods depends on
a number of factors. In this section, we will focus on the effectiveness
of using “experts” to evaluate usability and whether software
engineers can be trained to evaluate the usability of products,

The term heuristic evaluation describes a method in which a small
set of evaluators examine a user interface and look for problems that
violate some of the general principles of good user interface design
we described in Chapter 4. In one of the early heuristic evaluations,
Nielsen and Molich (1990) looked at the effectiveness of training
computer science students to evaluate usability. Nielsen and Molich
described nine basic usability principles to the students and then had
the students find violations of the principles in a user interface. The
intention here was to provide these students with a set of heuristic
rules, nine basic usability principles, to evaluate the usability of the
product. The nine principles were:

Use simple and natural language.
Speak the user's language.
Minimize user memory load.

Be consistent.

Provide feedback.

Provide clearly maked exits.
Provide shortcuts.

Provide good error messages.
Prevent errors.

© 00 N R I

The motivation for this investigation was to look for a method that
might be cheap to use. Giving software engineers a short tutorial on
usability principles is cheaper than having designers teach usability
specialists about their product and then have the specialists review
the product and tell the designers where the problems are.

This first study showed that, as individuals, the student evaluators
did not find many of the usability problems with the products they
evaluated. The range of problems each student found was between
about 20% and 50%. Nielsen and Molich then statistically aggregated
the individual evaluators into groups of varing sizes and found that
groups of five evaluators working separately would have found
between about 50% and 75% of the usability problems. On the basis

66 . A Practical Guide to Usability Testing

of this data, Neilsen and Molich recommended using heuristic evalua-
tion with three to five evaluators.

Since that 1990 study, several additional studies have looked at the
effectiveness of heuristic evaluation.

Jeffries et al. (1991) took a different approach to what they called
heuristic evaluation. They used people with advanced degrees and
experience in usability engineering as their experts. They asked these
people to find the usability problems with the interface to a product
without specifying any set of general principles to follow. These authors
also had a group of software engineers read a report describing a set
of 62 usability guidelines and evaluate the usability of the same product.

The usability experts found about three times as many problems as
the software engineers and more than twice as many of the most
severe problems. Since Jeffries et al. did not have an absolute measure
of the number of usability problems with the product being evaluated,
we cannot look at the success rate of these evaluators. Jefiries et al.
recommend using software engineers to evaluate the usability of a
product only when there are no experts in usability available.

It is difficult to compare the Jeffries et al. study with Nielsen and
Molich because of the different definitions of heuristic evaluation. The
software engineers whom Jeffries et al. had read the 62 usability
guidelines are more comparable to the software engineers Nielsen
and Molich used. In both studies, their success at finding usability
problems was disappointing. In a related study, Desurvire et al. (1992)
found that software engineers who were given a lecture on usability
principles found less than half the problems that usability specialists
found, but did find many specific, local problems.

The four usability experts that Jeffries had evaluate the usability of
the interface have some unknown, unmeasured level of expertise in
human-computer interaction. The lack of information on their expertise
makes it difficult to compare their performance with other groups of
“experts.” The studies we describe shortly all have this weakness.

Nielsen (1992) used three groups of evaluators:

1. "Novice” evaluators, who had no training or experience in
usability engineering.

2. “Regular” usability specialists, who were experts in usability
engineering but with no special expertise in the usability of
the type of interface they were evaluating—a telephone
voice-response system.

3. "Double” usability specialists, who were experts in usability
engineering and who also had experience working with
telephone voice-response systems.

The novices found only 22% of the usability problems, the regular
usability specialists found 41%, and the double usability specialists
found 60%. Nielsen also statistically aggregated the individual
evaluators into groups and found that five novice evaluators would

Evaluating Usability Throughout Design and Development . 67

find 50% of the usability problems, five regular usability specialists
would find about 80%, and five double usability specialists would find
about 98% of the problems.

These studies taken together show that software engineers are not
very effective at finding usability problems. The viability of giving
software designers a quick lecture or having them read a report on
usability principles and be effective at finding usability problems is
questionable. Some researchers are still optimistic about the potential
of this concept, but the evidence produced to date is not convincing.

As you might expect, experts in usability engineering are much
better at finding usability problems than software engineers and
usability experts who have experience with the technology they are
evaluating are best. The studies that report this finding, however, are
difficult to compare, because they have no measure of what it means
to be an expert.

While it is difficult to compare these studies, there is a finding that
is consistent: Heuristic evaluation, when used by experts, tends to
uncover many local problems. In the Jeffries et al. study, the experts
using this method found 52 problems that were judged “least severe.”
Usability testing uncovered only two of these problems.

In the final section of this chapter, we will talk more about this
finding, but it is worth noting here that conducting both a heuristic
evaluation with experts and a usability test would allow you to
combine the strenghts of these two methods: Usability testing would
uncover most of the major, global problems, and heuristic evaluation
would uncover most of the minor, local problems.

Research issue: It would be easier to compare studies using
experts if we knew more about how the experts
were uncovering problems. Nielsen's study
(1990) suggests that just as “"double” usability
specialists have some knowledge they have
gained from working with the technology
underlying the interface, “regular” usability
specialists have some knowledge they have
gained about human-computer interaction. It
would help us understand usability evaluation
much better if we had a large number of
“usability experts” talk aloud as they all
evaluated the same interface. We could
compare their approaches and see if there is
any consistency among them.

In the final section of this chapter, “Comparing Usability Testing with
Other Usability Evaluation Methods,”" we will look at how heuristic
evaluation compares with usability testing as a cost-effective way to
evaluate the usability of an interface.

68 . A Practical Guide to Usability Testing

Having Peers or Experts Walk Through the
Design

Structured walkthroughs have become a standard method for
assuring the quality of software (Yourdon, 1985). Walkthroughs are a
peer-group review of a technical product. They can be used to review
specifications, designs, or programming code. During a walkthrough,
the team of people who are developing a product “walk through” the
specifications or the programming code one step at a time looking for
bugs or inconsistencies.

There is a variation of the walkthrough, called a cognitive walk-
through, designed to evaluate the usability of the user interface
(Lewis & Polson, 1990). lts creators have proposed that this method is
an effective way to evaluate a user interface when a full prototype is
not feasible. The goal of the method is to evaluate the strengths and
weaknesses of the user interface without having to create a prototype
or the design itself.

The cognitive walkthrough is based on a formal model of human-
computer interaction. The model assumes that people learn about an
interface through a complex guessing strategy. Users make guesses
about what actions to take by comparing the expected outcome of the
action against their goals. They then take action and evaluate their
progress toward the goals.

The walkthrough consists of answering a set of questions about
each of the decisions users must make as they use an interface. The
questions have to do with identifying users’ goals, the ease with which
users will be able to identify the consequences of a decision, and how
easy it is for users to evaluate whether they are making progress
toward a goal. These questions are asked for each step of each task.

After those taking part in the walkthrough answer the questions
for each step, they rate the likelihood that users will have problems
making the correct choice or action. Those steps at which users will
be most likely to have problems need improving.

One of the advantages of this method is that it makes users’ goals
and expectations explicit. When a step is likely to cause problems for
users, the walkthrough indicates where the problem lies, for example,
in the feedback the system gives after users have taken some action.

While the walkthrough can yield useful diagnostic data, it has been
tedious to perform. The designers we have worked with would not
have the patience to make this method work in its paper-and-pencil
form. There is a software version of the method, called the
Automated Cognitive Walkthrough, that takes much of the tedium out
of the process of using the walkthrough (Desurvire et al., 1992). In
addition, researchers continue to simplify the cognitive walkthrough
to reduce the time it takes to perform as well as the tedium of the
process (Rowley & Rhodes, 1992).

Evaluating Usability Throughout Design and Development . 69

Lewis and Polson (1990) propose that this method can be used by
designers who do not have expertise in human—-computer interaction,
but we are skeptical. The validity of the method depends on an
accurate and thorough understanding of who the users are and what
skills and experience they have. As long as the designers have this
understanding, the walkthrough may be useful. But, if the designers
have an incorrect view of the users of the product, the walkthrough
will be invalid.

There have been some recent research studies looking at the
effectiveness of walkthroughs (Desurvire et al., 1992; Jefiries et al.,
1991). Generally, walkthrough methods are less effective at finding
usability problems than other evaluation methods, such as heuristic
evaluations. Karat, Campbell, and Fiegel (1992) have shown that the
effectiveness of walkthroughs can be enhanced by conducting the
walkthrough in a group rather than with individual evaluators,

In the final section of this chapter, “Comparing Usability Testing
with Other Usability Evaluation Methods,” we will look at how
walkthroughs compare to usability testing as a cost-effective way to
evaluate the usability of an interface.

Having Users Work With Prototypes

Prototyping is not a new idea. It is a valuable tool that was first used
in developing hardware. In that context, a prototype was a
handmade, mechanical model of a design. It gave both designers and
users a hands-on feel for the product. These hardware prototypes
varied in their fidelity to the final product, from simple foamcore
mock-ups to near-production models.

Until recently, designers of software user interfaces did not often
use prototypes. There was no quick and easy way to simulate the
look and feel of software. Creating a prototype of any complexity was
just as difficult as creating the code for the final product. Consequently,
designers could not conceive of creating a user interface that was
separate from the rest of the software (Edmonds, 1992).

Let’s look at two types of prototyes:

* Static, paper-based prototypes
* [nteractive, software-based prototypes

Then we will compare the effectiveness of these two types of
prototypes and look at some of the strengths and weaknesses of

prototypes.

Using Static, Paper-based Prototypes

One of the ways to get users involved in design early is to show them
screen images on paper of what a product will look like and ask them
to try them out. These paper images are sometimes called a

70 . A Practical Guide to Usability Testing

screenplay. A screenplay is a static prototype that can give you
valuable information about the usability of your product.

A screenplay can be effective particularly at helping you solve
problems such as developing a menu hierarchy that users can
understand. Let's look at an example to see what we mean.

This is the top level menu for a hypothetical drawing program:

| File Edt Draw Font Options Window Help

While this example of a drawing program is hypothetical, we have
constructed it from some actual drawing programs we have seen.

Imagine that you have drawn a figure. You look at it and decide
that you want to make the lines in your figure thicker or darker.
Which menu option would you go to? Most people we have asked
choose “Draw.” Here is the submenu for Draw:

Draw
Palettes...
Front

Back
Group
Degroup
Grid on

Grid off
Snap to grid

People are generally bewildered by some of these choices, but decide
to go back to the top level and choose another option. They often
choose Edit next, but quickly decide the right choice isn't there:

Edit

Can't undo
Repeat

Cut

Copy

Paste
Select all
Select block

Evaluating Usability Throughout Design and Development * n

Next, they'll often go to Options:

Options
Preferences...
Tools...

Zoom
Unzoom
Transform...
Import
[Export

From here, people usually choose Tools, but that brings up a palette
for doing new work. They usually then leave this menu, flounder
around in other choices for a while, go back to Draw and Edit, and
after several more wrong moves, decide they can live without
changing the lines. The correct choice would be Transform on the
options menu. That brings up a dialogue box that permits many
different changes to a drawing.

You can see how easy it is to find usability problems with menu
hierarchies by making a screenplay and having users work through it.
This happens to be the kind of usability problem that paper prototypes
are good at revealing (Nielsen, 1990). But this was only one problem,
and there may be many more. Using the static screens is slower than
using an interactive software prototype, but it can work. (See the later
discussion, however, in the section “Comparing Static and Interactive
Prototypes” for some further limitations of paper prototypes.)

As the size of the menu hierarchy grows, a screenplay becomes
more cumbersome to use, but it is useful for problems such as the
effectiveness of a small menu hierarchy.

Interactive, Software-based Prototypes
Over a very short period, about five years, most of the impediments
to creating useful software prototypes have disappeared. It is now
possible to simulate the look and feel of a software user interface in a
few hours, or a few days for a more complex product. Furthermore,
prototyping tools are now available for most hardware and operating
system environments.

Usability tests of prototypes of a design are becoming very
common, because they allow designers to make changes before it is
too late. Most software applications are sufficiently complex that it is

72 . A Practical Guide to Usability Testing

difficult for designers to understand how the product will work unless
they create a prototype.

Ironically, software prototyping tools are also being used to display
images of hardware user interfaces. For example, we have created
software prototypes of a remote control for a TV and a control panel
for a complex hospital bed. While these prototypes do not help users
to touch or feel the product, they can present realistic views of
layouts, buttons, and labels. These prototypes allow designers to get
feedback on usability from users long before they create actual
hardware prototypes.

The Benefits of Interactive Prototypes

In a very real sense, user-driven software design and usability testing
of software would be very difficult without prototyping tools. There
are four major benefits of software prototypes:

1. They make it possible to incorporate user feedback into the
design early in the development process.

2. They allow designers to explore several design concepts
before they settle on one.

3. They make it possible to evaluate several iterations of a
design.

4. They take the fuzziness out of what the user interface is and,
therefore, allow members of the design team to
communicate with each other about the user interface.

This fourth benefit is worth elaborating. With an interactive prototype,
a software engineer, who is involved in the details of a design, and a
marketing manager, who is only peripherally involved, can use a
prototype of the user interface to talk about it. The prototype reduces
the likelihood that people will miscommunicate about how the user
interface will look and operate.

Prototyping Less Than the Full User Interface

Prototypes are often created to explore part of the interface. For
example, a design team might create three prototypes that represent
different design concepts. Each prototype might mimic only a small
part of the user interface. Nielsen (1989, see Figure 5-1) makes a
distinction between types of prototypes that each represent only a
part of the user interface:

* Horizontal prototypes reduce the size of the prototype by
containing a shallow layer of the surface of the user
interface. For example, the prototype might show a
“desktop” screen with the names of each main menu item or

Evaluating Usability Throughout Design and Development = 73

icons on it. For an electronic mail horizontal prototype, users
might see an opening screen with a list of messages and the
main menu showing the options available. If users selected a
menu option, they would receive a message indicating that
further selections are not implemented or perhaps just hear
an audible tone.

* Vertical prototypes fully implement a small number of paths
through the interface, but do not include any part of the
remaining paths. For example, all of the branches of a
“Create” option of an electronic mail product might be
implemented so that the user could edit, transmit, store, or
print a message,

* Scenario prototypes differ from the other two types by being
task oriented. A design team might decide to fully implement
three important tasks that cut through the functionality of
the prototype. For example, the user might be able to create
a message, send it, and store it in a folder. If the user
deviates from the preferred path or selects an incorrect
option, that part of the prototype would not be implemented.

Nielson recommends the use of scenario prototypes as a tool for
evaluating usability. The limited size of these prototypes makes it
easy to change them frequently on the basis of some form of feedback
from users.

There is a potential problem with partial prototypes. Because they
mimic only part of the user interface, partial prototypes may lead a
test team to overestimate the usability of a product. In a partial

Difierent features

]
Scenario E
prototype 2
=
o |
[T
NN
Vertical
prototype
Full system

Figure 5-1. Horizontal,vertical,and scenario prototypes (modified from
Nielsen, 1989)

74 + A Practical Guide to Usability Testing

prototype, there are limited ways in which test participants can go
astray. When a participant selects an option in a software prototype
that has not been implemented, the prototype usually displays a
message informing the participant that the option is not part of the
prototype. In the real product, users will be able to select that option
and could, by doing so, get into more trouble than they can when the
option is not available. When a user interface has several global
problems that cut across the user interface, the fully implemented
user interface presents more ways for test participants to go wrong.

Comparing Paper Versus Interactive Prototypes

Nielsen (1990) has compared the effectiveness of using interactive
prototypes with the static paper prototypes we described earlier in
this chapter. He had two groups of evaluators examine either a paper
version of a prototype of a user interface or an interactive software-
based version created with a prototyping language.

There were 50 usability problems with each interface, 15 of which
Nielsen called “major." These major problems are what we call
“global.” The results show that the evaluators who were using the
software prototype found significantly more global problems. The one
global problem that the paper prototype was effective at uncovering
was a lack of consistent navigation rules in a menu hierarchy.

The results of this study suggest that when you have access to
interactive prototyping tools, it is preferable to use them in place of
paper prototypes.

Some Cautions About Prototypes
There is a lively debate in the human factors community about how
close the prototype needs to be to the final product to be a useful tool
for usability testing. The value of the new prototyping tools is that
they allow designers to try out design concepts quickly (Melkus &
Torres, 1988; Virzi, 1989). But they also allow designers to use the
prototype to create the entire user interface and to make it look like a
finished product. Used in this way, the prototype becomes a product
of its own, a demanding product that requires complex debugging.

We have seen design teams who want the prototype to mimic the
complete user interface and to look like a finished product. They
are afraid to show users a product that looks like it is still under
development because it may bias users against their design. In our
view, these designers waste valuable time treating the prototype as if
it were a product itself. Prototyping tools are best used to explore
alternative concepts. They do not have to have high fidelity to be
useful,

Another limitation of software prototyping tools is the difficulty of
simulating the response time that the real product will have. With a
prototyping tool, you can create a realistic looking and acting user

Evaluwating Usability Throughout Design and Development - 75

interface, but often you cannot predict how long it will take for the
final product to perform such actions as looking up information in a
database or drawing a complex graphic. The prototype, which does
not actually carry out these actions, may respond immediately to a
command while the final product may respond more slowly.
Consequently, the reactions you get from participants during a
usability test of a prototype can overestimate the ease of use of the
final product. If you can anticipate the length of any delays, build
them into the prototype. (See Hix & Ryan, 1992, for a quantitative
method for evaluating the effectiveness of prototypoing tools.,)

Research issue: Do prototypes that are low in fidelity bias users
to rate them lower in usability than a prototype
of higher fidelity? How much does the
appearance of the prototype contribute to users’
ratings of its quality or ease of uset

Getting User Edits on Early Versions of
Documentation

Just as you can have users try out prototypes of the user interface,
you can have them try out drafts of the documentation. The
documentation might be an installation card, a quick reference card,
the outline and/or sections of the users’ manual, or samples of the
online help.

Testing samples of draft documentation serves exactly the same
purpose as testing prototypes of the interface. It allows the writers to
see if they are on the right track with the content, organization,
language, and layout of the documentation from a small piece of the
work. Changes at an early stage save time and money, just as they do
in developing the interface.

Depending on the status of the documentation and the rest of the
product, getting users involved at the early stages can range from
asking a few users to read and comment on parts of the
documentation to including the draft documentation with the
prototype of the interface in a usability test. As with any other aspect
of usability engineering, a critical factor in getting users involved is
making sure that the people whom you have work with the draft
documentation represent real users.

Here are a few ways to involve vsers with draft documentation
early on:

If you are concerned about whether the organization of the draft
document matches the way that users will approach it, you can do a test

76 . A Practical Guide to Usability Testing

very similar to the static prototype of the menu structure of an
interface. You can give users tasks and ask them what they would look
up in the manual or online help when trying to do that task. You can
give them a draft table of contents to use. A draft table of contents is
the outline of the manual, reflecting all the headings and subheadings
that are planned for the manual.

If you are concerned about whether the content is what users need and
whether the style (language) will be clear to users, you can prepare the
documentation for one part of the product and see how well that works
for users. With the desktop publishing resources available today,
preparing draft printed documentation that looks very much like the
final documentation is easy.

Getting online help into a prototype may be more difficult. If you are
prototyping in the same system that will be used for the final product,
Microsoft Windows®, for example, you can probably have the online
help work with a prototype. If you are prototyping with a different
system, and the way help works in that system is not the same way it
will work in the final product, you would probably not want to put the
online help into the prototype. You could still have samples of the
online help available on paper.

Atlas (1981) described a user edit as having a user do a task, using
the instructions for the product as a guide. An observer watches,
listens, and takes notes. If you have the user try to follow the
instructions, you can use this method to find out if that particular set
of instructions is accurate, complete, and clear to the user. If the user
comments on problems, or if the user hesitates, misreads, or makes
mistakes, you have indications of problems in the text. To the extent
that the instructions the user is trying out are similar in level of
content and style to the rest of the manual, you have information that
can lead to much broader changes.

As Redish and Schell {1989) point out, this type of user edit can
give you very useful information about the general style and level of
detail of the instructions, but it may not help you understand how
well the document as a whole is organized for users. If the user edit is
of a specific part of a document and the user goes through the
document page by page and step by step, you are not seeing how
easy or difficult it is for users to find the information that they need in
the manual. You are, however, seeing how useful the manual is once
the users have found the correct page.

Soderston (1985, p. 18) described a usability edit as giving a user
“the task for the day, our written material, and the system."”
Observers watch and perhaps videotape the session. To the extent
that “our written material” includes enough of the manual to make
users both search for the correct information and then read (use) it,
Soderston’s usability edit can yield information about the organization
as well as the content and language of the manual.

Evaluating Usability Throughout Design and Development . 7

A major difference between Atlas's user edit and Soderston's
usability edit is that, in the latter, the user is told to think out loud
throughout the session. In essence, Soderston is describing a usability
test of part of the product and the documentation for that part.

Having users think out loud while performing any task, from
reading a text to working with a product, is also called having the
user give a verbal or think-aloud protocol. Since the early 1980s,
think-aloud protocols have been used very successfully in
understanding users’ problems with a wide variety of documents
(Schriver, 1989, 1991). As Schriver (1991, p. 167) points out, “very
often, protocols will help writers detect both problems of commission,
that is, problems caused by what the text says, and problems of
omission, that is, problems caused by what the text is missing."”

When testing draft documentation as part of any usability test,
however, keep these two caveats in mind: The first caveat is that it is
very difficult to test both whether people will use the documentation
and how they will use it in the same test. The second caveat is that
you must make the measures that you take about the documentation
match the stage of development that the documentation is at. For
example, if the draft manual does not yet have either a table of
contents nor an index, taking a measure of “time to find the
information users need” doesn’t make much sense,

Conducting Iterative Usability Tests

In Chapter 2, we discussed conducting usability tests on all parts of a
product—the software and hardware user interface and the documen-
tation—and conducting tests early and often. We are advocating an
approach to product design in which designers expose a product
under development to users in the form of usability tests as early as
possible and continue to conduct tests a often as necessary to ensure
the usability of the product.

We also advocate combining usability tests with the other
evaluation methods we discussed in this chapter. In the next section,
we describe which evaluation methods work best with usability
testing.

Comparing Usability Testing with Other
Usability Evaluation Methods

In the past two years, there have been a number of research studies
comparing the effectiveness of usability testing with some of the other
usability evaluation methods we have discussed in this chapter. We
expect that there will soon be many more studies, and they will

78 . A Practical Guide to Usability Testing

provide additional information about the advantages and disadvan-
tages of each method.

We briefly discuss the recent studies here. In general, they show
that usability testing compares well with other evaluation methods.
There are enough differences in methodology among these studies,
however, that we need additional research to give us a better
understanding of the relationships between the evaluation methods.

The Jefferies et al. Study

Jeffries et al. (1991) compared the relative efffectiveness of four
evaluation methods at uncovering usability problems in a software
application:

1. Applying guidelines—Software engineers were given a
report describing 62 guidelines of good practice in usability.
The engineers studied the guidelines and then used them to
evaluate the software user interface.

2. Heuristic evaluation—Four evaluators who had training and
experience in human-computer interaction evaluated the
software user interface. These experts were not told what
basis they were to use to conduct the evaluation.

3. Cognitive walkthroughs—Software engineers working as a
group were taught how to do a walkthrough of the user
interface. They then conducted a group walkthrough of the
product and identified usability problems.

4. Usability test—A human factors specialist conducted a
usability test with six participants and identified usability
problems.

There were several interesting results from this study. The heuristic
evaluation found the most problems (105), compared with applying
guidelines (35), the walkthrough (35), and the usability test (31).
However, no single expert found more than 42 usability problems in
the heuristic evaluation.

Jeffries et al. had seven usability specialists rate the severity of the
problems that these methods found. Jeffries et al. then ranked the
problems on the basis of the severity rating. Figure 52 shows the top
and bottom thirds of problems ranked on severity.

As you can see, the heuristic evaluation found the most problems,
although its advantage over the usability test is much smaller with the
most severe problems. The experts listed a large number (52) of least
severe problems. Jeffries at al. note that they are not sure that all of
these problems really need to be fixed. Notice, also, how few of the
least severe problems were uncovered by the usability test. This is not
surprising, because tasks selected for a test are intended to sample the

Evaluating Usability Throughout Design and Development . 79
Level of Guidelines | Heuristic | Cognitive | Usability
Severity of Evaluation | Walkthru | Test
Problems
most severe 12 28 9 18
least severe 11 52 10 2

Figure 5-2. Level of severity of problems found by each evaluation
method. (From)effries et al., 1991)

parts of the interface that are most likely to create global problems. If
a local problem occurs on a screen that test participants never use,
the test will not uncover the problem.

The results of this study show clearly the strengths and weaknesses
of these methods.

Usability testing finds global problems very well but is poor at
uncovering local problems. Heuristic evaluation, on the other hand,
finds many specific, local problems. It would appear, therefore, that
heuristic evaluation and usability testing nicely complement each
other.

Jeffries et al. computed a cost-benefit analysis of the four methods.
Again, heuristic evaluation yields the highest payoff. The four experts
took a total of 20 hours to do their evaluation; the usability test took
nearly 200 hours.

This study shows the value of having more than one expert review
the usability of a design. Clearly, if you have four experienced
usability specialists available to you, asking them to independently
evaluate the interface is the most cost-effective evaluation method. If
you do not have usability experts available, the only other method
that uncovers a substantial number of severe usability problems is
usability testing.

An interesting question that arises from this study is whether the
usability test uncovers problems that the other methods do not find.
Jeffries et al. did not conduct this analysis, but they report, as an
anecdote, that a severe problem that resulted in users being unable to
log into the system after deleting a directory was uncovered by one of
the participants in the usability test. This problem was not uncovered
by any of the other methods.

The Bailey et al. Study

While using both heuristic evaluation and usability testing may prove
complementary, Bailey, Allan, and Raiello (1992) have shown that
changing many of the local problems that are uncovered with
heuristic evaluation did not improve the usability of a software user

Lisability testing
finds global prob-
lems very well but
is poor af uncov-
ering local prob-
lems.

B0 . A Practical Guide to Usability Testing

interface. They had experts list the usability problems with a user
interface. The experts uncovered 43 usability problems with the
product. Bailey et al. also conducted a usability test with the product.
They fixed the single most serious problem with the product and
retested it. They then fixed the single most serious usability problem
with the product and retested it. They continued with this procedure
of fixing a usability problem and then retesting two more times. The
results showed that there was no statistically significant improvement
in preformance after the two most serious problems were fixed,

This study suggests that many of the specific problems that are
uncovered in a heuristic evaluation do not influence the performance
of users. We do not know whether these small problems would
influence users' perception of the ease of use of a product.

The Karat et al. Study

Karat et al. (1992) conducted a study comparing usability testing to
walkthroughs. In this study, two different products were evaluated to
assess the reliability of the methods. In addition to having six
individual evaluators conduct a walkthrough, they also had six pairs
of evaluators conduct a walkthrough together to see if walkthroughs
are made more effective when there is group interaction. The
usability tests had six test participants using the products.

The results show that the usability tests uncovered about twice as
many problems as the group walkthroughs and three times as many
as the individual walkthroughs. The usability tests also uncovered
significantly more severe problems than the walkthroughs.

Figure 5-3 shows the number of unigue usability problems found
by each method, that is, finding a problem that none of the other
methods found. As you can see, the usability test uncovered many
more unique problems than the other methods. About two-thirds of
these problems were severe.

Karat et al. also conducted a cost-benefit analysis of the methods.
As you might expect, the usability tests required the most time to
conduet, but required less time-per-usability problem than the other
methods.

Usability Team Individual

Tests Walkthru Walkthru
System 1 13 1 0
System 2 8 0 2

Figure 5-3. Unigque usability problems uncovered by each method.
(From Karat et al. 1992)

Evaluating Usability Throughout Design and Development + 81

The Desurvire et al. study

Desurvire et al. (1992) compared usability testing with heuristic
evaluation and cognitive walkthroughs. In addition, they had three
different types of evaluators: usability experts, software engineers
and nonexperts.

One of the unique features of this study was that the software
engineers had designed the product they were evaluating. One might
think that software developers who understand the internal workings
of a product will be able to find more usability problems than
software designers who are evaluating a product they did not design.

Consistent with Karat et al., the usability test in the Desurvire et al.
uncovered the most problems, and the usability experts found more
problems than the nonexperts or the software engineers. Figure 54
shows the number of problems that were uncovered by each of the
conditions.

As you can see, the usability test found more than twice as many
problems as the heuristic evaluation, which, in turn, found more
problems than the cognitive walkthrough. The usability experts found
about twice as many problems as the software engineers, who, in
turn, found about twice as many problems as the nonexperts.

Comparing the Studies with Each Other

The one major inconsistency among these studies is the effectiveness
of the performance of experts using heuristic evaluation. Jeffries et al.
found that the experts uncovered more problems than the usability
test did, while other studies found that the experts uncovered less
than half of the problems uncovered by a usability test. It is difficult
to compare these studies on these factors, because they each used

of Problems |% of Problems
Usability test 25 100%
Heuristic Evaluation
Experts 11 44%
Software Engineers 4 16%
MNon-Experts 2 8%
Cognitive Walkthrough
Experts 7 28%
Software Engineers 4 16%
MNon-Experts 2 8%

Figure 5-4. Number and percent of usability problems uncovered by
each method (From Desurvire et al. 1992)

82 . A Practical Guide to Usability Testing

different experts and did not measure the expertise or experience of
the experts in any systematic way.

One of the consistent findings of these studies, however, is that
heuristic evaluation when conducted by experts uncovers many more
local problems that other methods. Usability testing does just the
opposite, that is, it uncovers the global problems.

Taken together, these studies suggest these conclusions:

« Usability testing uncovers more usability problems than
other evaluation methods.

» Usability testing finds more global problems than other
evaluation methods.

* Usability testing finds more unique problems than other
methods.

* Usability testing uncovers fewer local problems than other
evaluation methods.

» Usability testing takes more hours to conduct than other
methods, but is cost effective when considered on a
cost-per-problem-uncovered basis.

» Heuristic evaluation, conducted by usability specialists, is
better at uncovering usability problems than walkthroughs.

= Heuristic evaluation gains in power when there are several
usability experts working independently.

» Heuristic evaluation uncovers more minor problems than
other methods, but changing these minor problems may not
improve performance.

* Cognitive walkthroughs are less effective than heuristic
evaluation and usability testing at uncovering usability
problems.

* Software engineers are not very good at uncovering usability
problems, even when they are given a short lecture or report
on principles of human-computer interaction.

Our recommendation, at this time, from the available evidence is to
conduct both usability tests and heuristic evaluations to take
advantage of each method's strengths. As Jeffries and Desurvire
(1992) note, “the best evaluation of a user interface comes from
applying multiple evaluation techniques.” Usability tests will uncover
the global problems and will also uncover more problems that the
other methods miss. If you only conduct usability tests, however, you
run the risk of having many undetected local problems in your
product. While any one of these problems is probably not serious
enough to keep users from completing tasks or frustrating them, the
combined effect of having many local problems is likely to make the
user feel that the designers were sloppy in their development effort.

In the next chapter, we discuss how to integrate usability testing
into an organization that develops computer-based products.

	Dumas&RedishCover.pdf
	dumas-redish_page63.pdf
	dumas-redish_page64.pdf
	dumas-redish_page65.pdf
	dumas-redish_page66.pdf
	dumas-redish_page67.pdf
	dumas-redish_page68.pdf
	dumas-redish_page69.pdf
	dumas-redish_page70.pdf
	dumas-redish_page71.pdf
	dumas-redish_page72.pdf
	dumas-redish_page73.pdf
	dumas-redish_page74.pdf
	dumas-redish_page75.pdf
	dumas-redish_page76.pdf
	dumas-redish_page77.pdf
	dumas-redish_page78.pdf
	dumas-redish_page79.pdf
	dumas-redish_page80.pdf
	dumas-redish_page81.pdf
	dumas\/redish_page82.pdf

